Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications

Identifieur interne : 000075 ( Main/Repository ); précédent : 000074; suivant : 000076

Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications

Auteurs : RBID : Pascal:14-0101999

Descripteurs français

English descriptors

Abstract

In the present work we did mutual alloying of the versatile XAs (X = Ga, In, Al) materials in order to improve their efficiency and enhance their range of technological applications using state of the art first principles method. We investigate the structural, electronic and thermodynamic properties of Ga1-xAlxAs, Ga1-xInxAs and In1-AlxAs for x = 0.25, 0.50, and 0.75. Calculations have been performed using the density functional theory (DFT) as implemented within the full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method. For exchange and correlation energy treatment, we employed the local density approximations (LDA) as proposed by Wang and Perdew and the generalized gradient approximation (GGA) from Perdew et al. proposed. To calculate the accurate band structure, recently modified Becke Johnson (mBJ) potential was suggested as an alternative. Our calculations show a linear fall in the lattice constant in contrast to linear rise in bulk moduli of Ga1-xAlxAs and In1-xAlxAs with the increase of Al concentration. However the change of indium concentration in Ga1-xInxAs is displaying a reverse effect. The energy band gap of Ga1-xAlxAs and In1-xAlxAs was found to be increased, where a crossover from direct to indirect band gap has been observed with the increase of Al concentration. This direct to indirect crossover was found at 93.4% of Al concentration for Ga1-xAlxAs and at 84.63% of Al concentration for In1-xAlxAs. The effect of the mutual alloying of XAs materials on the thermodynamic properties is comprehensively reported.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0101999

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications</title>
<author>
<name>BAKHTIAR UL HAQ</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Universili Teknologi Malaysia, UTM Skudai</s1>
<s2>81310 Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>81310 Johor</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ahmed, R" uniqKey="Ahmed R">R. Ahmed</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Universili Teknologi Malaysia, UTM Skudai</s1>
<s2>81310 Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>81310 Johor</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="El Haj Hassan, F" uniqKey="El Haj Hassan F">F. El Haj Hassan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Université Libanaise, aculté des sciences (I), Lahoraloire de Physique et d'éleclronique (LPE)</s1>
<s2>Elhadath, Beirut</s2>
<s3>LBN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Liban</country>
<wicri:noRegion>Elhadath, Beirut</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Khenata, R" uniqKey="Khenata R">R. Khenata</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara</s1>
<s2>Mascara 29000</s2>
<s3>DZA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Algérie</country>
<wicri:noRegion>Mascara 29000</wicri:noRegion>
</affiliation>
</author>
<author>
<name>MOHD KHALID KASMIN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Universili Teknologi Malaysia, UTM Skudai</s1>
<s2>81310 Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>81310 Johor</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Goumri Said, Souraya" uniqKey="Goumri Said S">Souraya Goumri-Said</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Physical Science Engineering Division, King Abdullah University of Science and Technology (KAUST)</s1>
<s2>Thuwal 23955-6900</s2>
<s3>SAU</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>Thuwal 23955-6900</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0101999</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0101999 INIST</idno>
<idno type="RBID">Pascal:14-0101999</idno>
<idno type="wicri:Area/Main/Corpus">000007</idno>
<idno type="wicri:Area/Main/Repository">000075</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-092X</idno>
<title level="j" type="abbreviated">Sol. energy</title>
<title level="j" type="main">Solar energy</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alloying</term>
<term>Aluminium arsenides</term>
<term>Band structure</term>
<term>Critical temperature</term>
<term>Cross-over phenomenon</term>
<term>Density functional method</term>
<term>Discrete Fourier transformation</term>
<term>Discriminant analysis</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Gallium arsenides</term>
<term>Implementation</term>
<term>Indium</term>
<term>Optoelectronic properties</term>
<term>Performance evaluation</term>
<term>Plane wave</term>
<term>Solar cell</term>
<term>Solar energy</term>
<term>State of the art</term>
<term>Ternary alloy</term>
<term>Ternary compound</term>
<term>Thermodynamic properties</term>
<term>Tuning</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Alliage (action)</term>
<term>Accord fréquence</term>
<term>Propriété optoélectronique</term>
<term>Propriété thermodynamique</term>
<term>Energie solaire</term>
<term>Evaluation performance</term>
<term>Etat actuel</term>
<term>Propriété électronique</term>
<term>Méthode fonctionnelle densité</term>
<term>Transformation Fourier discrète</term>
<term>Implémentation</term>
<term>Onde plane</term>
<term>Analyse discriminante</term>
<term>Structure bande</term>
<term>Bande interdite</term>
<term>Température critique</term>
<term>Cellule solaire</term>
<term>Arséniure d'aluminium</term>
<term>Composé ternaire</term>
<term>Arséniure de gallium</term>
<term>Indium</term>
<term>Alliage ternaire</term>
<term>Ga1-xAlxAs</term>
<term>Phenomène de cross-over</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the present work we did mutual alloying of the versatile XAs (X = Ga, In, Al) materials in order to improve their efficiency and enhance their range of technological applications using state of the art first principles method. We investigate the structural, electronic and thermodynamic properties of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As, Ga
<sub>1-x</sub>
In
<sub>x</sub>
As and In
<sub>1-</sub>
Al
<sub>x</sub>
As for x = 0.25, 0.50, and 0.75. Calculations have been performed using the density functional theory (DFT) as implemented within the full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method. For exchange and correlation energy treatment, we employed the local density approximations (LDA) as proposed by Wang and Perdew and the generalized gradient approximation (GGA) from Perdew et al. proposed. To calculate the accurate band structure, recently modified Becke Johnson (mBJ) potential was suggested as an alternative. Our calculations show a linear fall in the lattice constant in contrast to linear rise in bulk moduli of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and In
<sub>1-x</sub>
Al
<sub>x</sub>
As with the increase of Al concentration. However the change of indium concentration in Ga
<sub>1-x</sub>
In
<sub>x</sub>
As is displaying a reverse effect. The energy band gap of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and In
<sub>1-x</sub>
Al
<sub>x</sub>
As was found to be increased, where a crossover from direct to indirect band gap has been observed with the increase of Al concentration. This direct to indirect crossover was found at 93.4% of Al concentration for Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and at 84.63% of Al concentration for In
<sub>1-x</sub>
Al
<sub>x</sub>
As. The effect of the mutual alloying of XAs materials on the thermodynamic properties is comprehensively reported.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-092X</s0>
</fA01>
<fA02 i1="01">
<s0>SRENA4</s0>
</fA02>
<fA03 i2="1">
<s0>Sol. energy</s0>
</fA03>
<fA05>
<s2>100</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BAKHTIAR UL HAQ</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AHMED (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>EL HAJ HASSAN (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>KHENATA (R.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MOHD KHALID KASMIN</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GOUMRI-SAID (Souraya)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Faculty of Science, Universili Teknologi Malaysia, UTM Skudai</s1>
<s2>81310 Johor</s2>
<s3>MYS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Université Libanaise, aculté des sciences (I), Lahoraloire de Physique et d'éleclronique (LPE)</s1>
<s2>Elhadath, Beirut</s2>
<s3>LBN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara</s1>
<s2>Mascara 29000</s2>
<s3>DZA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Physical Science Engineering Division, King Abdullah University of Science and Technology (KAUST)</s1>
<s2>Thuwal 23955-6900</s2>
<s3>SAU</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1-8</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>8338A</s2>
<s5>354000500799130010</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0101999</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In the present work we did mutual alloying of the versatile XAs (X = Ga, In, Al) materials in order to improve their efficiency and enhance their range of technological applications using state of the art first principles method. We investigate the structural, electronic and thermodynamic properties of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As, Ga
<sub>1-x</sub>
In
<sub>x</sub>
As and In
<sub>1-</sub>
Al
<sub>x</sub>
As for x = 0.25, 0.50, and 0.75. Calculations have been performed using the density functional theory (DFT) as implemented within the full potential linearized augmented plane wave plus local orbital (FP-LAPW + lo) method. For exchange and correlation energy treatment, we employed the local density approximations (LDA) as proposed by Wang and Perdew and the generalized gradient approximation (GGA) from Perdew et al. proposed. To calculate the accurate band structure, recently modified Becke Johnson (mBJ) potential was suggested as an alternative. Our calculations show a linear fall in the lattice constant in contrast to linear rise in bulk moduli of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and In
<sub>1-x</sub>
Al
<sub>x</sub>
As with the increase of Al concentration. However the change of indium concentration in Ga
<sub>1-x</sub>
In
<sub>x</sub>
As is displaying a reverse effect. The energy band gap of Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and In
<sub>1-x</sub>
Al
<sub>x</sub>
As was found to be increased, where a crossover from direct to indirect band gap has been observed with the increase of Al concentration. This direct to indirect crossover was found at 93.4% of Al concentration for Ga
<sub>1-x</sub>
Al
<sub>x</sub>
As and at 84.63% of Al concentration for In
<sub>1-x</sub>
Al
<sub>x</sub>
As. The effect of the mutual alloying of XAs materials on the thermodynamic properties is comprehensively reported.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Alliage (action)</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Alloying</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Aleación (acción)</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Accord fréquence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tuning</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sintonización frecuencia</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Propriété optoélectronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Optoelectronic properties</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Propiedad optoelectrónica</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Propriété thermodynamique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Thermodynamic properties</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Propiedad termodinámica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Energie solaire</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Solar energy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Energía solar</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Etat actuel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>State of the art</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estado actual</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Transformation Fourier discrète</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Discrete Fourier transformation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Transformación Fourier discreta</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Implémentation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Implementation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Implementación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Onde plane</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Plane wave</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Onda plana</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Analyse discriminante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Discriminant analysis</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Análisis discriminante</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Structure bande</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Band structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Estructura banda</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Température critique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Critical temperature</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Temperatura crítica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Indio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Alliage ternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Ternary alloy</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Aleación ternaria</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Ga1-xAlxAs</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Phenomène de cross-over</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Cross-over phenomenon</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>139</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0101999
   |texte=   Mutual alloying of XAs (X = Ga, In, Al) materials: Tuning the optoelectronic and thermodynamic properties for solar energy applications
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024